P-selectin in Major Depression:
Preliminary Findings with Venlafaxine Treatment

John E. Piletz1, Angelos Halaris1, Omer Iqbal1, Debra Hoppensteadt1, Jawed Fareed1, He Zhu1, James Sinacore3, and C. Lindsay DeVane4

Departments of Psychiatry1, Pathology1, and Epidemiology1, Loyola University Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, Illinois 60153; Department of Psychiatry4, Medical University of South Carolina, 173 Ashley Ave., Charleston, South Carolina 29425-0742

ABSTRACT

Background
Disturbances in affective state are known to cause platelet activation, which may relate to evidence linking major depression and coronary artery disease. The platelet activation biomarker, P-selectin, exists in various blood fractions that demarcate steps of platelet activation. If circulating platelets are more activated in depressed patients, the literature suggests that amongst antidepressant classes, the Serotonin-Selective Reuptake Inhibitors (SSRIs) are best able to normalize this abnormality. Serotonin/Norepinephrine Reuptake Inhibitors (SNRIs), like venlafaxine, have not been studied in this regard.

Aim of the Study
To determine the status of activated P-selectin (platelet surface-bound and/or released forms) in depressed patients before and after 8 weeks of treatment with the SNRI, venlafaxine.

Methods
Baseline (untreated) subjects were major depressives (n= 23) and age/sex-matched healthy controls (n= 17) with no evidence of coronary artery disease. A subgroup of the depressed cohort (n= 15) was restudied after 4 and 8 weeks on venlafaxine. P-selectin levels were compared to two biomarkers not known to change during platelet activation: the membranous fibronectin-signaling protein, IRAS, and the antigen of the GPIIb/IIIa receptor, CD61.

Results
At baseline, both activated forms of P-selectin were high in the depressives, but only the soluble form showed statistical significance (p= 0.03) versus healthy controls. Venlafaxine treatment led to mood normalization based on reduced Hamilton Depression scores (p< 0.0001), while the level of soluble P-selectin was non-significantly lowered (p= 0.13). Platelet membranous IRAS and CD61 levels were normal at baseline but down-regulated after 4 and 8 weeks of treatment (p = 0.01 each).

Conclusion
High levels of soluble P-selectin were identified in depression, indicative of platelet activation. Venlafaxine treatment had minimal effect on soluble P-selectin but had clear effects on platelet IRAS and CD61. Therefore, platelet activation does not readily normalize with mood correction after 8 weeks on venlafaxine, but other platelet effects seem to occur.

Keywords: P-selectin, IRAS, CD61, Platelets, Cardiovascular Disease, Depression, Venlafaxine

INTRODUCTION
A large body of evidence indicates that major depressive disorder (MDD) imparts a substantial lifetime risk for developing coronary artery disease (CAD).1 Prospective epidemiological studies have repeatedly produced relative risk values (RRs) associated with depression in the 1.3 - 4.5 range for future cardiac disease, stroke, and/or death.2 The greatest RRs are found in patients exhibiting clinical depression within 6 months post-myocardial infarction.3,4 No exact mechanism has been established linking depression to CAD, but there are findings of sympathoadrenal activation and hypothalamic-pituitary-adrenal axis dysregulation in depressed patients.5 Another finding is that platelets are more activated (sticky) in depression6-8, which is thought to predispose to atherosclerosis.

Unfortunately, not all studies agree that platelets are more activated in depression.9-12 Part of the discrepancy may owe to different methods for assessing platelet activation. To clarify this, we have focused on the most frequently studied biomarker of platelet activation, P-selectin, and have analyzed its three activated forms: the soluble form in unperturbed plasma (sP-selectin), the unstimulated form detected by flow cytometry (platelet basal P-selectin), and the agonist-stimulated form detected by flow cytometry (platelet stimulated P-selectin). To anchor these measurements, we have added two unrelated platelet biomarkers: the integrin beta-3 protein antigen (CD61) and the integrin alpha-5 accessory protein, IRAS, on unperturbed platelets. These biomarkers are not associated with